Conservation Laws and Potential Systems of Diffusion-Convection Equations
نویسنده
چکیده
In her famous paper [14] Emmy Noether proved that each Noether symmetry associated with a Lagrangian generates a conservation law. (Modern treatment of relationship between components of Noether conserved vector and Lie–Bäcklund operators which are Noether symmetries was adduced in [10,18]. Kara et al [12,13] constructed conservation laws of some classes of PDEs with two independent variables using nonlocal symmetries.) V.A. Dorodnitsyn and S.R. Svirshchevskii [8] (see also [9, Chapter 10]) completely studied the conservation laws for reaction-diffusion equations
منابع مشابه
Hierarchy of Conservation Laws of Diffusion–Convection Equations
We introduce notions of equivalence of conservation laws with respect to Lie symmetry groups for fixed systems of differential equations and with respect to equivalence groups or sets of admissible transformations for classes of such systems. We also revise the notion of linear dependence of conservation laws and define the notion of local dependence of potentials. To construct conservation law...
متن کاملConservation Laws of Multidimensional Diffusion–Convection Equations
All possible linearly independent local conservation laws for n-dimensional diffusion–convection equations ut = (A(u))ii +(B i(u))i were constructed using the direct method and the composite variational principle. Application of the method of classification of conservation laws with respect to the group of point transformations [R.O. Popovych, N.M. Ivanova, J. Math. Phys., 2005, V.46, 043502 (m...
متن کاملA Basis of Conservation Laws for Partial Differential Equations
The classical generation theorem of conservation laws from known ones for a system of differential equations which uses the action of a canonical Lie–Bäcklund generator is extended to include any Lie–Bäcklund generator. Also, it is shown that the Lie algebra of Lie–Bäcklund symmetries of a conserved vector of a system is a subalgebra of the Lie–Bäcklund symmetries of the system. Moreover, we in...
متن کاملPerfect Derivatives, Conservative Differences and Entropy Stable Computation of Hyperbolic Conservation Laws
Entropy stability plays an important role in the dynamics of nonlinear systems of hyperbolic conservation laws and related convection-diffusion equations. Here we are concerned with the corresponding question of numerical entropy stability — we review a general framework for designing entropy stable approximations of such systems. The framework, developed in [28, 29] and in an ongoing series of...
متن کاملConservation Laws of Variable Coefficient Diffusion–Convection Equations
We study local conservation laws of variable coefficient diffusion–convection equations of the form f(x)ut = (g(x)A(u)ux)x + h(x)B(u)ux. The main tool of our investigation is the notion of equivalence of conservation laws with respect to the equivalence groups. That is why, for the class under consideration we first construct the usual equivalence group G∼ and the extended one Ĝ∼ including tran...
متن کامل